PRIMARY AND SECONDARY IMMUNE RESPONSE

FATIMA KAMAL & QUSAI IDRIS, 2ND YEAR PHARM D.
OBJECTIVES

- Define Primary Immune Response
- Define Secondary Immune Response
- Discuss Cells Involved in Primary and Secondary Immune Response
- Discuss Primary Immunodeficiency (PID)
- Discuss Secondary Immunodeficiency (SID)
- Compare Between Primary and Secondary Immune Response
DEFINE PRIMARY IMMUNE RESPONSE

- Occurs when an antigen comes in contact with the immune system for the first time.
 During this time, the immune system has to learn to recognize antigen and how to make antibody against it and eventually produce memory lymphocytes.
DEFINE SECONDARY IMMUNE RESPONSE

- Occurs when the second time (3rd, 4th, etc.) the person is exposed to the same antigen. At this point immunological memory has been established and the immune system can start making antibodies.
Primary immune response

Secondary immune response

Response is larger

Response is faster
DISCUSS CELLS INVOLVED IN PRIMARY AND SECONDARY IMMUNE RESPONSE

- **Plasma Cells**
 Fully differentiated B-lymphocyte (white blood cell) which produces a single type of antibody.

- **Memory B Cells**
 B cell sub-type that are formed within germinal centers following primary infection and are important in generating an accelerated and more robust antibody-mediated immune response in the case of re-infection (also known as a secondary immune response).
SIDs are more common than PIDs and are the result of a primary illness, such as HIV, or other external factor such as malnutrition or some drug regimens.

Most SIDs can be resolved by treating the primary condition.

- **Example:**
 - *Malnutrition* – Protein-calorie malnutrition is the biggest global cause of SIDs which can affect up to 50% of the population in some communities in the developing world.
DISCUSS PRIMARY IMMUNODEFICIENCY (PID)

PID disorders are inherited conditions, some PIDs are diagnosed during infancy or childhood, many are diagnosed later in life.

- **Causes:**
 - Single-gene mutations
 - Unknown genetic susceptibility combined with environmental factors.

- **Example:**
 - *B cell immunodeficiencies (adaptive)* – B cells are one of two key cell types of the adaptive immune system. Their main role is to produce antibodies, which are proteins that attach to microbes, making it easier for other immune cells to detect and kill them.
COMPARE BETWEEN PRIMARY AND SECONDARY IMMUNE RESPONSE

Primary Immune Response
- Lag Phase: Longer, (4-7 days) sometimes as long as weeks or months
- Antibody Level: Reaches peak in 7 to 10 days.
- Antibody Production: Mainly IgM, small amount of IgG are also produced.

Secondary Immune Responses
- Lag Phase: Shorter (1-4 days) due to the presence of memory cell.
- Antibody Level: Reaches peak in 3 to 5 days.
- Antibody Production: Mainly IgG, sometimes small amount of IgM, IgA and in the case of allergy IgE are produced.
Primary Immune Response

- **Amount of ab. production**: Depends on nature of antigen. Usually produced in low amount.
- **Ab. & Ag. affinity**: Affinity of antibody is lower for its antigen
- **Appearance**: Appears mainly in the lymph nodes and spleen.

Secondary Immune Responses

- **Amount of ab. production**: Usually 100-1000 times more antibodies are produced.
- **Ab. & Ag. affinity**: Antibodies have greater affinity for antigen.
- **Appearance**: Mainly in the bone marrow, followed by the spleen and lymph nodes
Primary immune response happens when antigen comes in contact with immune system for the first time, and secondary immune response happens when it comes in contact more than once.

PIIDs disorders are inherited conditions and SIDs and are the result of a primary illness.
REFERENCES

thank you