

الجامعة الليبية الدولية للعلوم الطبية Libyan International Medical University

Reduction of Anti-HER2 Resistance in Breast Cancer by Resolving Steric Clashes at the Orthosteric Site of HER2^{T798I} Mutant

Wafa M. Maklouf M. Sc. Pharmaceutical science Authors: Dr. Hamed I. Ali , Dr. Radwan Alnajjar

www.limu.edu.ly

Introduction

- Breast cancer develops from cells that grow uncontrollably.
- Classified into three subtypes or classes based on the presence or absence of specific proteins in the cancer cells.

Around 70% of BC cases are hormone receptor-positive, meaning they have either the progesterone receptor (PR) or estrogen receptor (ER) protein. Another 15 to 20% are HER2-positive, indicating high levels of the HER2 protein. The remaining 15% of cases are triple-negative, meaning the cancer cells lack all Three target proteins: ER, PR, and HER2.

Human Epidermal Growth Factor Receptor 2 (HER2)

www.limu.edu.ly

Mutated Receptor

Wild HER2 kinase (HER2^{T798})

Mutant HER2 kinase (HER2¹⁷⁹⁸)

www.limu.edu.ly

الجامعة الليبية الدولية للعلوم الطبية (LIMU) 🚦

Aim of the Project

The study aims to reduce anti-HER2 resistance in breast cancer by eliminating steric clashes at the orthosteric site in mutant HER2^{T798I}, flexible lapatinib analogs will be designed to avoid these clashes.

We use computational methodologies and modeling software by using

- ➤ Maestro software to prepare and dock for ligand and protein.
- > The next step is monitoring pharmacokinetics by Swiss ADME assign
- ➤ And pose ligand by Molecular Dynamics (MD) Simulations.

Methods & Material

1. Prepare and dock for ligand _ protein

High-throughput virtual screening (HTVS) 1,474068 Ligands	Standard- precision (SP) 1000Ligands	Extra-precision (XP) docking 200 Ligands	The best ligands have the best pose and a high docking score	Analysis of the docking results

Methods & Material

- 2. Swiss ADME
- The Swiss ADME web tool
 presented here is freely accessible
 Pharmacokinetics examining
 absorption, distribution,
 metabolism, and excretion.
- Early estimation during discovery reduces pharmacokinetics-related failure in clinical phases.

Methods & Material3. Molecular dynamics analysis

Molecular dynamics simulation is a method used to determine how atoms and molecules move over a certain time.

The timeline depicts protein interactions with ligands, including H-bonds, hydrophobic, ionic, and water bridges.

الجامعة الليبية الدولية للعلوم الطبية (LIMU)

Results and discussion

1. Docking analysis: Compound have docking higher than Lapatinib.

Docking score: -9.921

f

www.limu.edu.ly

2. Swiss ADME analysis

A. Physicochemical Properties

Compound	MW Daltons (Da)	TPSA Å	Rotatable bonds	HBA	HBD	ESOL Class	CLog P
856174 (C)	418.45	99.37	8	7	1	Moderately soluble	3.29

B. Pharmacokinetics Properties:

Compound	Predicted LD50: mg/kg	Predicted Toxicity Class	Hepato- toxicity	GI absorption	BBB permeant
856174 (C)	10000mg/kg	6	Inactive	High	No

Results and discussion

C. Bioavailability

Bioavailability radars for the most active compound: **C** The pink area represents the optimal range for each property:

- lipophilicity (LIPO) (XLOGP3 between -0.7 and +5.0)
- Molecular mass (SIZE) (between 150 and 500 g•mol -1)
 polarity (POLAR) (TPSA between 20 and 130 Å 2)
- Solubility (INSOLU) (log S not higher than 6)
- Saturation (INSATU) (fraction of carbons in the sp 3 hybridization not less than 0.25
- Flexibility (FLEX) (no more than nine rotatable bonds).

Ideal Drug likeness

2007 LIM U

Results and discussion

3. Molecular dynamics analysis

Shows the C α protein backbone starts stable but at 235.5 ns of trajectory has significant fluctuations ranging between 3.4–3.6 Å indicating no large conformational changes to the protein.

(Lig)fit on the protein plot the protease complex's overall RMSD plot compound(C)856174, which displays ripples between 1.5-3 Å, indicates that the ligand is stably attached to the binding site of the protease and has not dispersed away from it

Results and discussion

. Figure. shows longer continued contact with MET801.

Conclusions and future scope:

The study screened compounds for anti-her2 resistance in breast cancer, with showing best docking scores. **Compound (C)856174**, with a docking score of -9.92 kcal/mol, formed H-bonds with receptor residues and showed moderate solubility, low hepatotoxicity, and high GI absorption.

Further studies will be conducted through:

- a) Kinase profiling against HER2 protein kinase.
- b) In vitro and in vivo screening of **Compound** (C)856174 to validate its activity.

References :

- Anand, U., Dey, A., Chandel, A.K.S., Sanyal, R., Mishra, A., Pandey, D.K., De Falco, V., Upadhyay, A., Kandimalla, R., Chaudhary, A. and Dhanjal, J.K., 2023. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. *Genes & Diseases*, *10*(4), pp.1367-1401.<u>https://doi.org/10.1016/j.gendis.2022.02.007</u>.
- Brown, J.S., Amend, S.R., Austin, R.H., Gatenby, R.A., Hammarlund, E.U. and Pienta, K.J., 2023. Updating the definition of cancer. *Molecular Cancer Research*, 21(11), pp.1142-1147.<u>https://doi.org/10.1158/1541-7786.MCR-23-0411</u>.
- ✓ Li, S.G. and Li, L., 2013. Targeted therapy in HER2-positive breast cancer. *Biomedical reports*, 1(4), pp.499-505.<u>https://doi.org/10.3892/br.2013.95</u>.
- Daina, A. and Zoete, V., 2016. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. *ChemMedChem*, 11(11), pp.1117-1121. <u>https://doi.org/10.1002/cmdc.201600182</u>..
- ✓ Cerutti, D.S., Rice, J.E., Swope, W.C. and Case, D.A., 2013. Derivation of fixed partial charges for amino acids accommodating a specific water model and implicit polarization. *The Journal of Physical Chemistry B*, *117*(8), pp.2328-2338.<u>https://doi.org/10.1021/jp311851r</u>.
- Doak, B.C., Over, B., Giordanetto, F. and Kihlberg, J., 2014. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. *Chemistry & biology*, 21(9), pp.1115-1142. <u>https://doi.org/10.1016/j.chembiol.2014.08.013</u>.
- Lu, C. et al. (2010) 'Structural Evidence for Loose Linkage between Ligand Binding and Kinase Activation in the Epidermal Growth Factor Receptor', Molecular and Cellular Biology, 30(22), pp. 5432–5443. doi: 10.1128/MCB.00742-10.

www.limu.edu.ly

الجامعة الليبية الدولية للعلوم الطبية (LIMU)